The topics in the text are presented in a bit different order than usual. The order some of the chapters are presented is a little confusing such as the separation of some of the chapters into two parts for the essentially the same subject matter. Separation of gravitation chapter into a single chapter is a little strange since we use gravity in many examples in previous chapters such as Potential Energy and Applications of Newton's Laws. I am a little confused as to why there are three University Physics volumes. Typically, introductory physics is separated into two semesters at universities. Having three volumes means second volume will be covered in both semesters.
I don't find the textbook insensitive but I do not see much effort to support culturally relevant physics learning. The topics covered in this volume could foster learner engagement with important historically and culturally situated topics like: subjectivity and inclusion in physics, energy equity and energy justice. Perhaps future editions will incorporate these culturally relevant topics.
first step in physics volume 2 zambak
The book is comprehensive covering the traditional aspects of a classical physics first year at any College or University. It is well organized and follows a traditional logical order, ie. units & dimensions, mechanics, heat, E&M, Optics...read more
The book is comprehensive covering the traditional aspects of a classical physics first year at any College or University. It is well organized and follows a traditional logical order, ie. units & dimensions, mechanics, heat, E&M, Optics & Modern Physics etc., There are a great number of original questions and problems, with a range of difficulty, although most of the problems are too simple and repeat the same basic concepts.
So far all problems I have worked through are accurate and up to date examples. I have only found one typological error in an example problem, but the answer was correct based on putting the parentheses in the correct place. I submitted the errors via their site where errata can be submitted by users and those submissions can be seen by users. -physics-volume-1/errata
Even though the book is written in a very clear and straighforward language, there are certain places where much more information is provided than is necessary to explain and understand basic laws and principles of physics. For example, a student taking his/her first course in physics might not appreciate idea behind Fermi calculations of Chapter 1. In fact, all the ideas presented in Chapter 1 can be covered in one lecture period.
Overall, I like this first-semester textbook of physics. However, in my opinion, the textbook has very few challenging honors-level problems. Majority of the problems are one-step plug and chug kind of problems. At our university, we offer two separate sections of calculus-based physics, one for regular students and the other for honors students. It would be nice to include some additional multi-step problems that can be assigned only to honors students.
A typical course in introductory physics must cover a pretty standard set of topics. This text does a very good job at visiting all of them, following a standard presentation sequence that begins with a chapter on units and measurements and ends with a comprehensive discussion of wave mechanics. It often connects the subject with contemporary applications, with some relevant topics treated in the problem set, including examples of bio-inspired problems. In some cases it goes beyond the standard text, for example, when incorporates detailed calculus derivations and the presentation of advanced topics such as relativity (at the end of the chapter on gravitation) and Poiseuille and turbulent flows (in the chapter on fluid mechanics). The only major absence is the treatment of wave optics, which is discussed at length in volume III, where electromagnetic waves and modern physics are discussed.
The text follows a very common theme when it comes to how the content is covered: first start off with basic math, then go into kinematics, then dynamics, followed by work and energy, then momentum. They add in rotational aspects of all mechanics scattered about a few chapters, which I personally wouldn't do. But, I do understand the ideas behind not thinking of rotational motion as it's own entity to study, but rather apart of other concepts in physics. All in all, though, courses often stop at momentum, but this text delves into various applications of theory starting from Static Equilibrium and Elasticity (Chapter 12).
This book is very comprehensive covering every aspect of a major physics first year at any University. It is well orgainised and follows a traditional logical order, ie. units & dimensions, mechanics, heat, E&M,Optics & Modern Physics...read more
This book is very comprehensive covering every aspect of a major physics first year at any University. It is well orgainised and follows a traditional logical order, ie. units & dimensions, mechanics, heat, E&M,Optics & Modern Physics etc., There are a great number of original questions and problems, with a range of difficulty, and an Instructors manual is available to registered instructors. There are also slides and a students solutions manual.
The books contents are standard basic (but comprehensive) physics. There is plenty of room for expansion within the text. but perhaps a pitful is its comprehensiveness and there fore size, for all three volumes 2500+ pages, altough that will last most courses getting on two full years. Includes discussion, some questions and problems on Higgs boson for example.
University Physics, Volume 1 by Ling, Sanny and Moebs covers the typical topics found in a first semester physics course. The example problems are well worked out. Students who are familiar with traditional textbooks should have no problem using...read more
University Physics, Volume 1 by Ling, Sanny and Moebs covers the typical topics found in a first semester physics course. The example problems are well worked out. Students who are familiar with traditional textbooks should have no problem using this one. There are concepts of vector manipulation and use of spherical and cylindrical coordinates that are missing. Overall, if an online homework system is not needed, this is a decent textbook for beginning students.
This textbook (university physics volume 2) covers two units of introductory physics, thermodynamics and E&M, although usually we do not combine these two units in a one-semester course in our institute. The electricity and magnetism part can...read more
This textbook (university physics volume 2) covers two units of introductory physics, thermodynamics and E&M, although usually we do not combine these two units in a one-semester course in our institute. The electricity and magnetism part can serve as a standalone textbook for a one-semester calculus based university physics course. All the topics in a similar course I offered for many years can be found in this textbook. Volume 2 ends at the discussion of Maxwell's equations and the E&M waves. It is very easy to adapt the material in the textbook to a common university physics course to cover electricity and magnetism. There are many wonderful examples to show the students how to apply the concepts discussed in the text. And the sets of homework are particularly useful for the teachers and students. However, if your course is designed to manage homework online, for example, LON-CAPA, you probably need some time to write the codes in order to use the homework problems. In my course, I continue with diffraction of waves and ray optics. If the authors can change the outline of the contents to include optics in volume 2, that will be wonderful.
This is the first in a 3-volume set. It covers all of classical mechanics along with waves and oscillations. It is appropriate for a calculus-based physics course in a 3-semester sequence. Combined with the other volumes, it can be adapted to...read more
This is the first in a 3-volume set. It covers all of classical mechanics along with waves and oscillations. It is appropriate for a calculus-based physics course in a 3-semester sequence. Combined with the other volumes, it can be adapted to use in a 2-semester sequence.
Generally yes. Covers the topics typically covered in the first term of a calculus based introductory (200-level) physics course. I did not see an obviously located index, however the digital format of the book is searchable. However, this feature...read more
Generally yes. Covers the topics typically covered in the first term of a calculus based introductory (200-level) physics course. I did not see an obviously located index, however the digital format of the book is searchable. However, this feature does not completely replace an index because some students buy a printed book. There is a glossary at the end of each section, but not a global glossary.
The book is generally accurate. Inaccuracies are not related to content, but rather to typographic errors and such. More importantly, a site exists where errata can be submitted by users and those submissions can be seen by users. -physics-volume-1/errata
University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result.
Data from many different experiments have started to build a first glimpse of the phenomenology associated with neutrino oscillations. Results on atmospheric and solar neutrinos are particularly clear while a third result from LSND suggests a possibly very complex oscillation phenomenology. As impressive as the results from current experiments are, it is clear that we are just getting started on a long-term experimental program to understand neutrino masses, mixings and the physics which produce them. A number of exciting fundamental physics possibilities exist, including that neutrino oscillations could demonstrate CP or CPT violation and could be tied to exotic high-energy phenomena including strings and extra dimensions. A complete exploration of oscillation phenomena demands many experiments, including those possible using neutrino beams produced at high energy proton accelerators. Most existing neutrino experiments are statistics limited even though they use gigantic detectors. High intensity proton beams are essential for producing the intense neutrino beams which we need for next generation neutrino oscillation experiments 2ff7e9595c
Comments